Willkommen auf KLäRWERKE.DE

klärwerke.de bietet Ihnen weiterführende Links auf Webseiten zum Thema klärwerke

Startseite > Kläranlage

Eine '''Kläranlage''', auch ''Abwasserbehandlungsanlage'', in der in Betrieb genommen.

Weltweit fallen mit Stand 2018 rund 1000 Kubikkilometer Abwasser an. Hiervon werden in den Industriestaaten ca. 70 % durch Kläranlagen gereinigt, in wenig entwickelten Staaten jedoch nur etwa 8 %. Im Durchschnitt sind Kläranlagen für rund 20 Prozent des kommunalen Energieverbrauchs verantwortlich. Bundesweit werden dafür 4400 Gigawattstunden elektrische Energie im Jahr verbraucht (2009). Ein Teil dieser Energie kann durch die Verstromung des beim Klärprozess anfallenden energiereichen es in einem Blockheizkraftwerk selbst erzeugt werden. Im Jahr 2014 waren von ca. 10.000 deutschen Kläranlagen rund ein Achtel mit einem BHKW zur Eigenversorgung mit Strom und Wärme ausgestattet. Diese lieferten ca. 1.340 GWh elektrische Energie, die zu mehr als 90 % in den Kläranlagen selbst verbraucht wurde. Damit könnten rechnerisch alle Haushalte einer Großstadt wie Frankfurt am Main versorgt werden.

Davon erfordert in der Regel das Druckbelüftungssystem im Belebungsbecken den mit Abstand größten Energieaufwand von allen Verfahrensschritten einer kommunalen Abwasserbehandlungsanlage.
Der Energieverbrauch für die Belüftung liegt im Durchschnitt bei etwa 50 Prozent des gesamten Energiebedarfs. Danach folgen die kontinuierlich laufenden Pumpen, und die drittgrößte Verbrauchergruppe bilden in der Regel die fortlaufend arbeitenden Rührwerke. Diese drei Hauptkomponenten verbrauchen bei normal geführten Anlagen über 80 Prozent der Energie.

Unter optimalen Bedingungen ist es möglich, Kläranlagen mit Energiegewinnung zu betreiben. So realisiert die Kläranlage der Stadtwerke Bad Oeynhausen seit einem Umbau im Jahr 2014 Energieüberschüsse. Nach Schätzungen ist die chemische Energie im Abwasser etwa neunmal so hoch wie die für den Klärvorgang notwendige Energie.

Folgende Maßnahmen zur Steigerung der Energieeffizienz werden unter anderem vorgeschlagen:
  • durch Austausch, Optimierung und Regelung der Belüfter können unter Umständen mehr als 50 Prozent der Belüftungsenergie eingespart werden
  • Verbesserung der Betriebsführung zur Vermeidung von Druckverlusten
  • Einsatz moderner Pumpen der höchsten Effizienzklasse (EFF 1)
  • transparente Überwachung (Monitoring), mehr Stromzähler, Druckverlusterkennung bei den Belüftungseinrichtungen, übersichtliche Anordnung der Messinstrumente
  • mechanische Entwässerung vor der Einbringung in den Faulbehälter zur Reduzierung der Beheizungsenergie
  • effiziente Nutzung der Faulgase zur Stromerzeugung
  • Trocknungsprozesse über Sonnenenergie oder Abwärme
  • Einrichtung eines Blockheizkraftwerkes zur Faulgasverstromung ? damit erreicht man einen Eigenversorgungsgrad von etwa 33 % des Strombedarfs (Stand 2009).

Darüber hinaus kann die im Abwasser enthaltene thermische Energie mit Hilfe von (Groß)-n auf ein höheres Temperaturniveau angehoben werden und anschließend in systeme eingespeist werden. Eine 2017 publizierte Review-Studie fand insgesamt 54 Großwärmepumpen mit einer kumulierten Wärmeleistung von rund 900 MW in Betrieb, die in aller Regel Abwasser mit einer Temperatur von 10?20 °C nutzen. Die leistungsfähigsten Anlagen dieser Art befinden sich in Skandinavien, wobei in Stockholm mit 230 MW und mit 160 MW besonders große Anlagen installiert waren. Ähnliche Systeme könnten nun in anderen europäischen Städten genutzt werden. Als besonderen Vorteil der Abwasserwärmenutzung sehen die Autoren die von wirtschaftlichen Unsicherheiten kaum tangierte Langzeitverfügbarkeit der Wärmequelle Abwasser an.

Treibhausgasemissionen

Kläranlagen sind Emittenten von Treibhausgasen, die im Klärprozess anfallen. Freigesetzt werden sowohl Kohlenstoffdioxid als auch weitere hochpotente Treibhausgase wie Methan oder Distickstoffmonoxid. Schätzungen für das Jahr 2010 ermittelten einen Treibhausgasausstoß von ca. 0,77 Mrd. Tonnen CO<sub>2</sub>-Äquivalent, was etwa 1,57 % der globalen Äquivalentemissionen in Höhe von 49 Mrd. Tonnen entspricht. Der zugrundeliegende Kohlenstoff stammt weitgehend aus natürlichen organischen Stoffen, daher gilt das freiwerdende Kohlendioxid als treibhausgasneutral; problematisch sind vor allem die Methan- und Lachgasemissionen, da diese um ca. Faktor 25 bzw. 298 stärker wirken als Kohlendioxid. Mit etwa 0,56?0,71 Mrd. Tonnen CO2-Äquivalent sind diese Emissionen aus Kläranlagen für etwa 4,6 % ? 5,2 % der globalen Nicht-CO2-Emissionen verantwortlich.

Zugleich sorgen Kläranlagen auch für eine Reduzierung potentieller Treibhausgasmengen. Denn würde Abwasser ungereinigt in ein Gewässer eingeleitet werden, führte dies neben der entsprechenden Verschmutzung mit den üblichen Begleiterscheinungen (Eutrophierung, Fischsterben) zu einem erheblichen Anstieg der Treibhausgasemissionen. Die natürlichen Abbauprozesse finden zunächst unter Zehrung des gelösten Sauerstoffs statt, wobei Kohlendioxid freigesetzt wird. Nachdem der Sauerstoff aufgebraucht wurde, finden die weiteren Abbauprozesse unter anaeroben Bedingungen statt. Dadurch kommt es vermehrt zu Methan-, Schwefelwasserstoff- und Lachgasemissionen, die wiederum (s. o.) ein höheres Treibhauspotential aufweisen.

Kläranlagen gelten aufgrund des Anfalls großer Mengen von kohlenstoffhaltigem Abwasser, ihrer Lage in dicht besiedelten Gebieten und der größtenteils schon vorhandenen Infrastruktur als vielversprechende Standorte für die Installation von Kohlendioxidabscheideanlagen für die Endlagerung oder die industrielle Weiternutzung von CO2. Auf diese Weise könnte anfallendes Kohlendioxid entweder dauerhaft der Atmosphäre entzogen werden, um klimapolitisch wünschenswerte negative Emissionen zu realisieren, oder als industrieller Rohstoff für diverse Anwendungen genutzt werden. Ein besonderer Vorteil von Kläranlagen ist hierbei, dass durch die bereits vorhandene Technik kein zusätzlicher Landverbrauch für Abscheide- und Transportinfrastruktur benötigt würde. Mögliche Konzepte für solche Anlagen umfassen den Einsatz von mikrobieller elektrolytischer CO2-Abscheidung, mikrobielle Elektrosynthese, das Anlagen von Mikroalgen-Kulturen, das Anlegen künstlicher Feuchtgebiete, die Produktion von Biokohle aus Klärschlamm oder die Aufwertung des erzeugten Biogases durch Methanisierung des enthaltenen Kohlenstoffdioxids (Power-to-Gas-Konzepte).

Sonderformen

  • Eine Sonderform für die dezentrale Abwasserbehandlung ist die .
  • Nichttechnische Anlagen der Abwasserbehandlung sind unter dem Begriff beschrieben.

Weblinks

  • Aktuelle Fachinfos rund ums Klärwerk
  • VSA-Plattform "Verfahrenstechnik Mikroverunreinigungen" Verband Schweizer Abwasser- und Gewässerschutzfachleute
  • In: ''Stadtentwässerung Dresden.'' (Interaktive Kläranlage)
  • In: ''Frankfurt360.de.'' (360-Grad-Rundumansichten)
  • In: ''Wasserverband Neufelderseen-Gebiet.'' (Video zur Funktionsweise einer Kläranlage)
  • ? Lehrfilm
  • ? 360-Grad-virtuelle Tour

Einzelnachweise

<references>
<ref name="U3855x3">'''', Umweltbundesamt, Okt. 2009, S. 3 (PDF; 2,7 MB).</ref>
<ref name="U3855x4">'''', Umweltbundesamt, Okt. 2009, S. 4?5 (PDF; 2,7 MB).</ref>
<ref name="U3855x6">'''', Umweltbundesamt, Okt. 2009, S. 6?8 (PDF; 2,7 MB).</ref>
</references>